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ABSTRACT. We study a Cahn-Hilliard model for phase separation in composite materials with
multiple periodic microstructures. These are modeled by considering a highly oscillating poten-
tial. The focus of this paper is in the case where the scales of the microstructures are smaller
than that of phase separation. We provide a compactness result and prove that the I'-limit of
the energy is a multiple of the perimeter. In particular, using the recently introduced unfolding
operator for multiple scales, we show that the taking the limit of all of the scales together is
equivalent to taking one limit at the time, starting from the smaller scale and keeping the larger
fixed.

1. INTRODUCTION

Composite materials are everywhere in natural (bones, blood, ice, wood) and in synthetic
products (foam, colloids, concrete, elastomers). Therefore, there is a huge interest in under-
standing how to obtain an effective description of chemical, physical, and mechanical properties
that are essential for applications, such as conductivity, stiffness, permeability. The complex
interactions between the the different components result in a dependence of these effective prop-
erties on nontrivial details of the microstructure. In this manuscript, we focus on understanding
the distribution of phases at stable equilibrium in a composite material with two periodic mi-
crostructures (both larger than the molecular scale) at different scales.

For a single material under isothermal conditions, the classical model used to describe stable
configurations of phases in a liquid-liquid separation is the celebrated van der Waals—Cahn—
Hilliard (also known as Modica-Mortola) functional defined as follows:

FO (y) = /ﬂ (W (u) + €% Vul?] da (1)

for u € WH2(Q;RM). Here, Q C R is an open bounded set, ¢ > 0 is a small parameter,
and the continuous function W : RM — [0, +00) is the material dependent free energy density
with suitable growth at infinity and vanishing at two points (the wells) a,b € RM. These latter
correspond to the stable phases. The main goal of the analysis is to understand the asymptotic
behavior, as € vanishes, of miminizers of F, under a mass constraint of the form

][udx:ma—l—(l—m)b, m € (0,1).
Q

Using the expansion by I'-convergence (see [4, 20]), it is has been proved (see [11, 35, 34, 40, 39,
26]) that

FO~ FQ +eFY), (2)
where
FO(u) = / W (u) dz,
Q
and

F{)(u) = o] Dul(92),
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for w € BV (€;{a,b}), namely functions of bounded variations taking values in the set {a,b}.
Here,

1
o = inf { [ 2VWG@I R 0] dt 7 € Lin(-1, 1R (1) = asn(1) = b} ®

This latter functional is the I'-limit in a suitable L? topology, depending on the growth of F' at
infinity, of

O A —min FQ FE(O)'
€ €

The expansion in (2) reads as follows: minimizers of Y converges to minimizers of ch),
which are also minimizers of Fég), at an ‘energy-rate’ . Moreover, it turns out that the typical
minimizer u, of FE(O) is a function with the following structure: take a set £ C €2 such that the
function u = alg + blg\ g minimizes the functional F under the mass constraint |E| = m|Q].
Consider an e-tubular neighborhood (9F). of the boundary of E. Then, u. € H'(Q;RM) is
equal toa in E'\ (OF)., to bin 2\ (FU(JFE).), and has an optimal transition between those two
values in (OF). that resembles the optimal profile that solves the minimization problem defining
o in (3). In particular, the transition region has size of order €. Therefore, the expansion (2)
yields an approximation both of minimizers and of their energy.

Several extensions of the model (1) have been studied over the years. Here, we limit ourselves
to recall those considered by Baldo in [6] for the case of multiple wells, by Barroso and Fonseca
in [7] for general singular perturbations, and by Owen and Sternberg in [38] and by Fonseca
and Popovici in [25] for the case of fully coupled integrands. For a more complete review of the
results on the topic, we refer the reader to the Introduction of [18].

In the case the material has macroscopic heterogeneities, for instance it is not in an isothermal
case, the functional (1) has to be modified by taking into consideration the different response of
the material at any given point to a specific phase. Namely, we consider the functional

FO(u) := /Q (W (2, u) + 2| Vul?] da, (4)

for u € WH2(Q;RM), where W : Q x RM — [0,00) is a continuous function with a suitable
growth at infinity and close to its wells such that W(x,p) = 0 if and only if p € {a(x),b(x)},
where a,b: Q@ — RM are Lipschitz functions. Also in such a case, an expansion of the form (2)
is possible (see [8] for the scalar case, [18] for the vectorial case, and also [15] for a weaker sets
of assumptions on the behavior of the potential W close to the wells), where now

W = [ ow) V),

for u € BV (%;{a,b}). Here, BV (£;{a,b}) is the space of functions u : © — RM of bounded
variations such that u(z) € {a(z),b(x)} for a.e. x € Q, J,, denotes the jump set of the function
u, and

1
o(z) = inf { [ 2V WA O]t € Lip(-L R (1) = a(a),2(1) = b(az)} |

Namely, the function o is the analogous of (3) when we ‘freeze’ the point x € J,,.

We now enter into the realm of the modeling of phase separation in composite materials. We
consider the case where the material has a periodic microstructure with scale § > 0 (see Figure
1 to the left). The natural modification of the functional (1) yields

FO(u) = /Q [W<§u> +62]Vu|2] dz. (6)
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FI1GURE 1. Left: A composite material with a periodic microstructure. Right: A
microstructure with materials inclusions. Different colors correspond to different
materials.

To model the periodicity models the periodic structure inside the periodicity cell ()1 we require
the potential W : Q x RM — [0,00) to be a Carathéodory function that is Q;-periodic in the
first variable, with suitable growth at infinity, and with wells at a,b € RM™. In particular, the
low regularity in the first variable is necessary in order to consider the case of a microstructure
with materials inclusions £ C @7 (see Figure 1 to the right). In such a case, the potential W
might jump from one material to another.

Obtaining an expansion of the form (2) is now more challenging, due to the presence of two
parameters in the problem. Indeed, there is a competition between the process of homogenization
of the periodic structure and that of transition between the stable phases. The former happening
at a scale 0, while the latter at an (expected) scale . Therefore, the problem naturally gives
three regimes:

)<L e e € < 0.
The zeroth order in the expansion by I'-convergence yields a functional of the form
FO (u / W, (u) dz,

where the bulk energy density W, : RM — [0, 00) depends on which of the three above regimes
we are in. Nevertheless, it always hold that

min {Fo(g)(u) :][ udz =ma+ (1 — m)b} =0.
Q
(1)

The interesting term is Fio

In the first regime, the homogenization process happens at a smaller scale then the phase
separation one. Therefore, we expect to first the combined limit to be equivalent to first sending
0 — 0 while keeping ¢ fixed, and then to send € — 0, namely first homogenize and then do phase

separation. This was confirmed in [16], where it was proved that
FU(u) == o"|Dul(Q).
for u € BV (£;{a,b}), where

f{/ 2 WhG ) 1 (O] dt 7 € Lip([-1, 15RY), 2 (1) =an() = b} (1)
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and
Wh(u) = L W dy
1
is the averaged potential, which can be seen as the homogenization of W with respect to the
strong L' convergence. Note that the surface energy Fo(ol) is isotropic.
In the second regime, namely when & = ¢, the two physical processes interact at the same
scale, and therefore a complex formula for the limiting energy

FO () = / o(vy) dHN L, (8)

for u € BV (;{a,b}) is expected. Here, v, € S¥~! denotes the measure theoretical exterior
unit normal to {u = a}. The precise formula for o, in the case 6 = Le, was obtained in [17],
and reads as

T—o0

op(v) = lim %inf {/TQ [ll;W(x,u) + L’VU|2:| dz:u € .AT} , 9)

and
Ar = {u e H(TQ,;RM), u = p*u, on 8(TQ,,)} ,

where @, is a cube with two faces orthogonal to v, p is a standard mollifier, and u, (z) equals a
if x-v > 0, and b otherwise. It is worth noticing that L € (0, 00), and that the limiting surface
energy is anisotropic. The reason is that the direction v of jump of the function v might be not
aligned with the directions of periodicity of the potential W. This mismatch is at the origin of
the anisotropic nature of the limiting energy. Note that, contrary to the previous regime, the
optimal transition profile is no more one dimensional.

The third regime £ < § sees the phase separation process happening at a smaller scale than
homogenization. Thus, we heuristically expect to first send € — 0 while keeping ¢ fixed, and
then send this latter to zero. In this case, with the first limit we go from a bulk energy to a
surface energy of the form

Ews | o (5) dHN (), (10)

v \0

for sets £ C RY of finite perimeter, and o :  — [0, 00) is defined in (5). Note that, with this
first limit, we pass from a bulk energy to a surface energy, that we now need to homogenize.
This is done by using the theory of plane-like minimizers developed by Caffarelli and de la Llave
in [10], and used by Chambolle and Thouroude in [12] in the context of homogenization. This
gives, for each v € SV~ the existence of a set of locally finite perimeter E, C RY such that
the homogenization of the energy in (11) is given by

e [ by ple)) an (o), (11)
O*E
where )
h 1 N-1
@)= Jim e [ o) i) (12

The proof that the functional in (11) equals F s provided in [16].

Note that the limiting surfaces densities in (7), (9), and (12) are all surface densities of a
constant quantity, a bulk integral, and a surface one, respectively.

Finally, we remark that, in all of the cases, the limiting energy does not depend on the
spatial variable. This is an advantage for both the theoretical and the numerical point of view.
Indeed, for the former it gives a geometric model approximating a complex physical phenomenon,
other than theoretical tools to investigate regularity properties of minimal interfaces. For the
latter, numerical simulations for Fo(i) are extremely expensive when ¢ < 1, since the size of the
discretization grid has to be smaller than §. This is in analogy with what happens in the classical
theory of homogenization. Therefore, it is more convenient to perform numerical simulations
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for the functional &) in (8) than for (6). Of course, one has to compute the limiting surface
energy densities (7), (9), and (12), and the last two are not that easy.

Extensions of the functional (6) in the context of phase separation in composite materials
with one scale of microstructures have been considered by several researchers. In particular, the
case where wells are also dependent on the spatial variable has been investigated by the first
author, Fonseca and Ganedi in [15] in the regime ¢ < 6. Moreover, the case where oscillations
are in the singular term have been considered by Ansini, Braides, and Chiado Piat in [3] (see
also [2]), while the effect of an highly oscillating forcing term has been investigated by Dirr,
Lucia, and Novaga in [21] and [22|. Finally, the literature for stochastic setting features recent
contributions by Marziani (see [33]), by Bach, Marziani and Zeppieri (see [5]), by Morfe (see
[36]), by Morfe and Wagner (see [37]) and by Donnarumma (see [23]).

The question that is at the basis of the project, of which this paper is the first step, is the
following: what happens when the material has multiple microstructures at different scales? In
particular, is it true that the ‘principle of multiscale physics’ obtained above for one scale and
according to which we compute ‘one limit at the time’ holds true also for multiple scales?

The prototype of a composite material with multiple microstructures is that of a periodic
structure with materials inclusions having a periodic (smaller) microstructure as well (see Figure
2 on the left). Namely, we have in mind potentials W : RY x RY x RM — [0, 00) of the form

W(y1,y2,2) = L1, (y1)[1r, (y2)W1(u) + Lo, 1, (y2) Wa(u)] + Lo\, (y1) W3 (u),

that are (01 periodic in the first variable, and Q)2 periodic in the second, where ()1 and Q)9 are
the periodicity cells of the larger and the smaller microstructures. Note that there is no relation
between ()1 and Q2. Therefore, we are naturally led to consider the functional

0 r T
F9 (u) = /Q [W((S, o u> +52|Vu|2] dz. (13)
Having the above example in mind, we always assume a separation of scales
n <K 0.

A complete study of the I'-convergence of this functional requires five distinct regimes:
() n<ike;

(2) n< (e~ 0);
B)n<Kekd;
(4) (n=e) <6;

(b)) e n K.
Note that the case of more than two microscales reduces to one of the cases above, except for the
(family of) case(s) where A < (¢ & n) < 0, being A another scale. Nevertheless, this situation
can be treated by combining what happens in the second and the fourth regimes above.
In this paper we focus on the regime

n<KiKe.

For this case, we expect to obtain the first order I'-limit by first sending 7 to zero, then J, and
finally e. We confirm this claim by a careful analysis that allows us to make rigorous the above
procedure of taking ‘one limit at the time’. The main novelty of the paper is in developments of
techniques robust enough to be applied to multiple scales. In particular, in our main theorem
(see Theorem 9) we show that

F (u) = o™ Dul(Q2), (14)

o0
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60,

0}

FIGURE 2. Left: A composite material with a two nested periodic microstruc-
tures. Center: A microstructure with materials inclusions and a nested mi-
crostructure. Right: A microstructure with periodic inclusions. Different colors
correspond to different materials.

for functions v € BV (Q;{a, b}), where

mf{/ 2/ Wh(s )Iv()\dt:veLip([—l,l];RM),v(—l)=a77(1)=b},

and
Wh(2) 3:][ W (y1,y2,2) dyi dye,
14 Q2

We also provide a compactness result (see Theorem 6) that allows us to use standard results

of I'-converge to prove the convergence of minimizers and minima. Finally, we consider the

case where the functional (13) is finite only on configurations satisfying a mass constraint, and

we prove that this passes to the limit; namely, that the first order I'-limit is finite only for

configurations satisfying the mass constraint and, in this case, given by the functional (14).
The other regimes are the focus of a series of forthcoming papers.

2. ASSUMPTIONS AND MAIN RESULTS

Let Gs, Gy, be two subgroups of RY with rank N, corresponding to the microscales 6 and 7.
Let Q1 be the periodicity cell with respect to G, and let Q2 be the periodicity cell with respect
to G;,. We assume them to be bounded, with Lipschitz boundary, and containing the origin.
Points in @1, Q2 will be denoted by y1, 12, respectively.

Let W: RN x RN x RM — R be a function satisfying the following hypotheses:

(H1) W is a Carathéodory function, periodic in the spatial variables, that is:
o 2z W(y1,y2,2) is continuous for LN-a.e. y1 € Q1, y2 € Qo;

o y1 — W(y1,y2,2) is measurable and Gi-periodic for all z € RM and for £N-a.e.
Y2 € Q2, namely W (y1 + &1, v2,2) = W(y1, ye, 2) for all & € Gy;

o y3 — W(y1,ys,2) is measurable and Go-periodic for all z € RM and for £LM-a.e.
y1 € Q1, namely W (y1,y2 + &2, 2) = W (y1, y2, 2) for all & € Ga.

(H2) There exist a,b € RM such that
W(y1,y2,2) =0 < z € {a,b}.
(H3) There exists R > 0 such that for LN-a.e. y; € Q1, y2 € Q2, if |2| > R then it holds:

1
Wi(2) 2 2l
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(H4) For every S > 0, there exists a constant Cg > 0 depending only on S such that
esssupy1€Q17y2€Q27‘z|§5W(y1,y2,Z) < Cs.
(H5) There exists Wy : RM — R such that
0<Wi(z) < W(y1,92,2)  Vy1 € Q1,Yy2 € Q2.

Remark 1. We note that Assumption (H5) is only needed for the compactness. In [17, Theorem
1.6], the compactness was obtained without the need of a spatially uniform lower bound on W.
Despite it is possible to use a similar strategy as employed in [17, Theorem 1.6| to get compactness
without the need of a lower bound, we prefer to add this assumption in order to focus on the
strategy to get the I'-limit.

Remark 2. The hypothesis (H4) seems quite natural to us, as it implies that the potential
energy does not blow up in a finite space. It will be used in the proofs to bound some integral
terms containing W. A similar assumption appears in the work [6] by Baldo (see formula (1.2)
in that paper).

Remark 3. Hypothesis (H3) is needed in order to get compactness. This is done by using the
classical strategy developed in [26] by Fonseca and Tartar (see also [30]). In the case where

a mass constrained is in force, it is possible to remove this assumption by using a strategy
developed by Leoni in [31]. We will use this in Theorem 13.

Remark 4. Our analysis is restricted to the case of two wells. For the case of multiple wells,
the result still holds after some minor modifications, by incorporating the techniques of [6].

We now introduce the functional that we will study.

Definition 5. Let (74)n, (0n)n, (€n)n be infinitesimal sequences. For each n € N, define
BV LY RM) — [0, 4] as

1
FM(u) = / [€W<;, §,u> +6n\Vu|2] dz,
QLen n 'In

if u e Wh2(Q;RM), and +oo otherwise.

In the following, we will always require 7, < d,, that is the microscales are separated. Indeed,
in the case (1, =~ d,) < &y, the study reduces to that considered in [16].
The main results are the following.

Theorem 6. (Compactness) Let (n)n, (0n)n, (€n)n be infinitesimal sequences such that n, <
On K &y, that is

lim @:O, lim — = 0.

n—o0 Oy, n—00 &y,
Assume that (H1), (H2), (H3), and (H5) hold. Let (uy), C L*(Q;RM) be a sequence of functions
such that

sup F{V (u,,) < oo.
neN

Then, there exists a subsequence (un, ) C WH2(Q;RM) and a function u € BV(£2;{a,b}) such
that w,, — u strongly in L*(Q; RM).

We now define the limit functional.
Definition 7. Let u € L'(Q; RM). Define FL: LY(Q;RM) — [0, +00] as
FO (u) = { o' Per({u =a}; Q) weBV(Q{a,b}), (15)

400 otherwise,

where oP

1
ot = inf{/_12 Wh(y(t)) |y (£)] dt : v € Lip([=1,1; RM), 5(=1) = a,7(1) = b}’ (16)

is given by:
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S

F1GURE 3. The regime considered in this paper: n < § < ¢

and W"(2) is defined as
Wh(z) ::][ 5 W (y1,y2, 2) dy1 dys, (17)
1 2
for all z € RM.

Remark 8. It turns out that the proofs are slightly easier if, in the definition of o, we allow
7 to be in a slightly different family than Lip([—1, 1]; RM), namely Lipz([—1, 1]; RM), which is
the space of continuous curves v: [~1,1] — RM such that v € Lip(T;RM) for every compact
set T' C [—1, 1] disjoint from {t € [-1,1] : y(¢) € {a,b}}.

Theorem 9. (I'-convergence) Let (np)n, (0n)n, (€n)n be infinitesimal sequences such that
N K Op K €n, that is
J
lim 2 —0  lim —o,
n—00 &y,

Assume that (H1)-(H4) hold. Then, as n — oo, JolQ I-converges to FY with respect to the
strong L' (; RM) convergence.

Remark 10. The analysis of this paper and the following other four regimes are restricted to
the case of two microscales. The type of potential that we have in mind is of the form

W(y1,y2,2) = L, (y1)[L1, (y2) W1 () + Lo\ 1, (y2) Wa (w)] + Lo\ 1, (y1) Wa(u)

In the case of multiple microscales, our result still applies. In particular, it shows that in the
case the parameter ¢ is larger than every scale of the microstructure, the surface density of the
limiting functional is obtained by taking the weighted averages of the potentials.

The proofs for compactness and I'-convergence are robust enough to be applied (with minor
modifications) to the case of a mass-constrained functional.

Definition 11. (Mass-constrained case) Let m € (0,1). We define the mass-constrained

~

functionals £V : LY (4 RM) — [0, +00] as

FW(w) u € W1’2(Q;RM),/ udx = ma + (1 —m)b,

B (u) = o

400 otherwise,

and FY): LY RM) — [0, +00] as

F\éol)(u) — FO () u € BV(Q; {a,b}), /Q uwdz = ma + (1 —m)b,

+o00 otherwise.
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Remark 12. The case N = 1, M = 1 has a classical proof based on traslations of the optimal
profile along the real line. Here, we treat the case N > 1, starting from the strategy in |6,
Lemma 3.3|. As far as we know, under our weak assumptions on W, there are no proofs for the
case N=1,M > 1.

Theorem 13. Let m € (0,1), and let (nn)n, (0n)n, (en)n be infinitesimal sequences such that
Nn K O0p K €n, that is

Then, the following hold:
(1) Let (un)n C LY(Q;RM) be a sequence of functions such that
sup ﬁrgl)(un) < 00.
neN
Assume that (H1), (H2), (H3), and (H5) hold. Then, there exists a subsequence (up, )i C
WL2(Q;RM) and a function u € BV(Q; {a,b}) such that
Up, — u strongly in LY RM).

(2) Assume that (H1)-(H4) hold. Then, (ﬁél))n [-converges with respect to the strong
LY RM) convergence to ch), asn — oo.

Remark 14. In case the potential W is assumed to be of class C? in the last variable, a simpler
proof gives the above result for all N, M > 1 (see [29]).

2.1. Outline of the strategy. In this section, we explain the main novel ideas and the chal-
lenges of the proofs of the main result, Theorem 9.

For the liminf inequality, the main challenge is to first take the limit as §,, — 0 while keeping
en, fixed, and then sending &,, — 0. In the case of one scale of microstructure, in [16] the authors
introduces a strategy to make this argument rigorous. The idea is the following: given a sequence
(tun)nen C LY RM) such that u, — u for some u € BV (Q;{a,b}), we focus on the potential

term
/W (x,un(m)> dz.
Q 5n

We would like to replace the integrand

x

w (6’ un(x)> with W (un ().
n

This, in general, requires the technical strong assumption § < °/“ to use a Poincaré inequality

to perform the pointwise substitution (see [28], and also [3]) since the above integral is multiplied

by €, !. Since we are interested in a liminf inequality, we reason as follows. Using the unfolding

operator U; at scale d,, we can write (up to asymptotically negligible terms)

/QW<(;;,un(:U)> dx:/Q [ WU, ) dy e

If in the integrand on the right-hand side we had w,(x) in place of Uju,(x,y), we would have
done, since that term would exactly be the homogenized potential W™ (u,(z)). Having this in
mind, we write

/ W (y, Usun (2, ) dy dac = / W (g, n() + Urtn (2, 9) — un(2))) dy e,
QJQ1 QJQ1

3/2

and we treat the term Uju, (z, y) —uy () as a perturbation that we expect to vanishes as n — oc.
In particular, fixed £ > 0, we can consider the space of such admissible perturbations A¢ that
will have to satisfy some technical conditions that we do not specify in here (see [16, Definition
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3.3]), but with the fundamental property that A¢ contains only the zero function when £ = 0.
Thus, we get

/ W(yaun(x)Jr(Ulun(%y)—un(x)))dydwz/Wf(un(w))dfm (18)
QJQ Q

where WE(p) = inf {/Ql W(y,p+(y)dy: ¢ e Ag} .

Therefore, we got rid of the scale §,, at the cost of introducing a slighter different potential
W¢ in place of WP, This will need to be fixed at the end of the proof. Indeed, using (18), the
standard argument for the liminf of the Modica-Mortola functional yields that

lim inf £V (u,,) > 0f Per({u = a}; ),

n—oo

where
1
ot mint { [ WO O]t € L1 R (-1 = ao(1) = b},

Therefore, in order to conclude, we need to prove that
lim o€ = o".
£—0
This is done by a study of the geodesic problem defining those two quantities, using the fact
that W¢ converges to Wh™ locally uniformly.

For multiple scales, one would expect a similar strategy to work. One of the main contribution
of the present paper is the formalization of the argument and the carrying out the delicate
analysis to prove that all the errors introduced by the approximation vanishes in the limit.
Indeed, the technicalities involved in the several steps of the proof are far from being a trivial
adaptation of the argument for the one scale case. In particular, if for a single scale, the periodic
unfolding is used, for two scales, a double periodic unfolding Us is needed. This mathematical
tool has been recently developed by Damlamian, Griso, and Cioranescu in [14] (see next section
for more details) and allows to write

xr X
/ w (57 ) un($)> der = / / W(y17y27u2un(x7y)> dyQ dyl dz.
Q n Tn Q 1JQ2

In order to separate the contribution of two scales 7, and J,,, we write

This is a source of technical difficulties. First of all, we needed to identify the right classes
of admissible competitors for the infimum problem that defines the approximate functional
W¢ (see Definition 33); it turns out that what makes the analysis work is to have admissible
classes that also include some pointwise conditions. Unfortunately, the terms on the right-
hand side of (19) that are not u,(x) do not actually belong to the required space of admissible
competitors. Therefore, we need to estimate that the region where all of the conditions are
satisfied is, asymptotically, of full measure. Finally, checking that the energy density ¢ for the
approximate homogenized potential W¢ converge to ¢, requires a careful analysis, since in the
case of multiple scales, the wells of W are not single wells anymore, but balls centered at the
wells a and b.

We note that, in reviewing the strategy for the one scale case, we are able to simplify several
steps of the proof of [16, Theorem 4.1].

The construction of the limsup inequality follows a standard approximation argument, where
we reduce ourselves to defining it essentially only for the case of a single flat interface. Since the
quantity that we want to approximate is o, we take an approximate geodesics for the problem
defining it, and we rescaled such a curve in the normal direction of the interface in a tubular
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FIGURE 4. Left: Idea behind the single scale unfolding. Right: Decomposition
into a proper set and a boundary set.

neighborhood of size e,. The technical difficulties now lies in checking that, for this particular

sequence (uy,)p it holds that
T x
L (5 nla) ) = W (o)
Q n Tn
This is essentially based on a continuity argument for W and for the function u,,.

lim =0.
n—oo

3. PRELIMINARIES

3.1. Unfolding operator. We recall the classical notion of single scale Unfolding Operator
defined in [13] and recall the new notion of double scale unfolding operator, as defined [14].

Let Q € RY be a bounded open set. Let Gs, G, be two subgroups of RY with rank N, corre-
sponding to the microscales 6 and 7. In order to make these definitions non-trivial, we require
7 < 4, that is the microscales are separated. Let Q1 be a periodicity cell with respect to Gg, and
let @2 be a periodicity cell with respect to G,. We assume them to be bounded, with Lipschitz
boundary, and containing the origin. Points in @)1, Q2 will be denoted respectively by w1, yo.

Definition 15. (First unfolding operator) Let us define:
o 1 ={{€G1:6({+ Q1) C QY
© ﬁ& = U (5(6—’_@1)7
§€E)
o A5 =0 \ ﬁg.
The first unfolding operator Uy : L?>(Q;RM) — L2(Q; L2(Q1; RM)) is defined as:
5% ) . in Q)
Uy, 1) = {¢( L;JQ1+ y1) a.e ?n s X Q1,
a a.e. in Ay x @1,
where |z|g, € G1 and {z}g, € Q1, such that z = |z, + {z}0,-

Definition 16. (Second partial unfolding operator) Let us define:

o Hy = {5 €Gy: g(f—bz,n-FQz) - Ql};

© @1,17 = U g (5 — 2 +©2)7

£eso

© Al,n = Ql \ @1,77-
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The second partial unfolding operator Us ,: L*(Q1; RM) — L2(Q1; L?(Q2; RM)) is defined as:

5 A
Uo (1, 1y2) = ¢ <§ L%J 0 Feom + gy2> a.e. in Q1 X Q2
N ) —

a a.e. in Ay, X Q2

where (12,)y is a sequence of vectors in Q2. This is needed to account for the mismatch between
the two nested microscales.

Definition 17. (Second unfolding operator) Let us define the second unfolding operator
Us: L2(Q;RM) — L2(Q; L2(Q1; L2(Q2; RM))), as Uy = Uy, o Uy, or in formulas:

o) (5 151, t 1 V%J o, M2 + nyg) ae. in Q5 x Q1 X Qa,
a ae. in (QxQ1)\ (2 x Quy) X Q,

e {2 USCJ@}QZ <@

This particular choice will be clear from later computations.

u2¢($7 Y1, y2) =

where

Remark 18. The presence of term ¢, may seem weird: it turns out that unless G; C G2 and
d/n is an integer, this term is necessary for the needed properties to hold. Its importance will
be made clear in the next Lemma 19.

These definitions are slightly different from the classical ones, as in this case the operators
are non-zero on the boundary sets. This allows us to simplify some of the computations.

Lemma 19. Let W: RY xRN x RM — [0, +00) and u € L?(;RM) be as in Theorem 9. Then

we have
/ %% (x’ m,u) dz > / / W (y1,y2,Usu) dys dy; dz. (20)
Q d n Q 1JQ2

Proof. Using the definition of the first unfolding operator U; we have

/W(”””u> de/ W(x,x )dm
Q d'm s d'm
1) 1)
Wy, 551 + %yl,u (0&1 + 6y1) ) dyn

)
/ / (yh =&+ —y1,u (06 + (5y1)> dy dz,
£1€5, 061+6Q1 1 n

where we used the change of coordinates x = 6¢ + dy; and used the @Qq-periodicity of W in its
first argument. We now repeat this estimate using the second partial unfolding operator:

)
/ / <y17 =&+ —y1,u (68 + 5y1)> dy; do
€165, 861+6Q1 1 n

) B)
= Z / _ /A w (yl, =&+ —y1,u (661 + 5y1)> dy; dz
061+6Q1,m Y Q1,9 n n

1€

N
=) / (E) / w <Q§2 i Tya, o, u (861 + 1€ — nuay + ?7y2)> dys dz
o JoariQu, 2, N0 Joa o N0 J
— 1,
where
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We used the change of coordinates y; = % — ngm + gyg. From this it is clear why we chose this
particular value of ¢, substituting the change of coordinates in the second argument of W we

get
1) 1) 1) 1)
G+ -yp=-+Ltyp— & =88+ =y on Q.
n n n n

Therefore, we can continue with the estimate:

n

N 1
I'= 5; /5£1+5©1 : 522 <g> /Q2 ( €2 — L2n SY2: Y2, U (081 +né2 — nuay + 773/2)) dyo dx

/55 50 [1 W (Y1, y2, u (061 + 02 — 12y + ny2)) dyz dyr da
1+0Q1,n v 3

n n
516 1&2€E0 582Gt 3R Q2

= /A /A W (y1,y2,Usu) dya dy; de,
Qé Ql,n Q2

where in the last equality we used that
x

Va € 061+ 8Q1., bJQl =+ QMJ = ¢,

and also that

Yy € §2—{ 51} +gQ2, Vle = {52—{551} +Q2J = &a,
Q2 n1Q, n Q- @

which give the exact definition of the second unfolding unfolding operator on SAZ(; X @1,77 X Qo.
Now, since we have defined the unfolding operator to be equal to a on the boundary sets, we
have that

W (y1, y2, Uzu) dyodyda =/ o W (y1,y2,a) dyady dz = 0.
(OxQ1\(QsXQ1,n) X Q2

This lets us add back the boundary set to the integral, therefore having:

/A /A W (y1, y2, Uou) dyo dyy dl‘:// W (y1,y2, Usu) dyo dyy da.
Qs JQ1,n Y Q2 Q 1JQ2

Summing up everything, we have that
/ W(max7u> dz Z / / W(yhy?aZ/{Qu) ddeyl dz.
Q d'n QJQ1/Q2

Remark 20. As is shown from these computations, this result does not change if we choose
another value for the first unfolding operator U; on the boundary set, as long as it is a constant.
The only important choice is Uou = a on the boundary set.

/(QXQl)\(§5X@1,n)XQ2

O

The following propositions will be important later; for their proofs we refer the reader to
13, 14].
Proposition 21. Let u € L?(; RM). Then:
(1) the first unfolding operator U is linear, continuous and bounded from L2(Q;RM) to
L2(9 LA(Qu BM));
(2) the second unfolding operator Us is linear, continuous and bounded from L?(;RM) to
L2(2: L2 (Qu; L*(Q2; RM))).
Moreover, if u € WH2(Q;RM) | the chain rule holds for both unfolding operators, therefore:
HVyluluHLQ(Q;LQ(QI;waM)) = 6”1/{1VU||L2(Q;L2(Q1;RN><M)) < 5HVU||L2(Q;RN><]M), (21)

IV yoUhaul 2 (0;12(Qu:L2(QuirN x 1))y = MUVl L2 (0 12(Qy;L2(QuirN xM))y < MVl p2(urivxry.
(22)
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Proposition 22. Let us define G1: 2 x Q1 — Q and Go: Q X Q1 X Q2 — 2 as

X
Gi(z,y1) =6 bJ o + oy,
T 1)
Ga(x,y1,92) =6 bJ o +n Uﬂ — M2,y + NY2,
Q2

where 1oy is chosen as above. This then implies:
Uu=uoG a.e in ﬁg X @Q1;
Usu =uoGy a.e in Qg X @1,77 X Q2.
Then the following hold:
(1) |G2(z, y1,92) — Gi(z,y1)| < en;
(i) |G2(x, y1,y2) — x| < cd.

Proposition 23. Let ¢ € L' (Q;RM), and let v,w € L?(;RM). Let Q1 be the image Ofﬁ(s X Q1
under the map Gy, and let Qo be the image of Q5 x Q1,, X Q2 under the map Go.
Then the following hold:

(i) Uy (vw) = Uyv - Uyw on Qs x Q1;
(ii) Us(vw) = Usv - Usw on Qs x @1777 X Qa;

(iii) /Q/QlUM(xa%)dyl dx:/ﬁl ¢(x) da;

(“’)// Usp(,y1,y2) dyr dyada = | P(x) dz;
QJ/Q1xQ2 Q2

(v)

/ Uné(z, ) dyy dz — / o(z) da
QJQ Q

sAAwmw;

\ Q2
(vi) /Q /Q  tad{r, )y /Q o) da| < /Q @ ar

Proposition 24. Let w € L*(Q;RM). Then the following hold:
(i) Uyw — w strongly in L*(; L2(Q1;RM)) as § — 0;

(ii) Uosw — w strongly in L?(; L?(Qq; L*(Q2; RM))) as 1,5 — 0.

Proposition 25. Let (ws)s_so C L*(Q;RM) be a sequence converging strongly to wy € L?(Q; RM)
as 6 — 0, and let (wy)y—0 C L2(Q;RM) be a sequence converging strongly to wo € L*(Q;RM)
as n,6 — 0. Then the following hold:

(i) Uyws — wy strongly in L*(Q; L2(Q1;RM)) as 6 — 0;

(ii) Uswy — wo strongly in L?(Q; L*(Q1; L?(Q2; RM))) as 1,6 — 0.
3.2. I'-convergence. In this section, we recall the definition and the basic properties of I'-
limits. Since in this paper we work in the setting of the metric space L' (€; RM), we will present

the equivalent definition with sequences. We refer to [19] (see also [9]) for a complete study of
I"-convergence on topological spaces.

Definition 26. Let (X,d) be a metric space, and let (F,), be a sequence of functionals F, :
X — [—00,400]. We say that (F,), I'-converges to F' : X — [—o0,+0o0o] with respect to the
metric d, if the following hold:

(i) (Liminf inequality) For every = € X and every (x,), C X with z,, — x, we have
F(z) < liminf F, (),
n—oo
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(ii) (Limsup inequality) For every x € X, there exists (), C X such that
lim sup F () < F(z),
n—oo

and with z,, — x.

The notion of I'-convergence was designed to characterize in a variational way the limiting
behavior of sequences of global minimizers, as well as of the minima (see, for example, [19,
Corollary 7.20]).

Theorem 27. Let (X,d) be a metric space. Consider, for each n € N, a functional F,, : X —
RU{oo}, and assume that the sequence (F,)y I'-converges to some F : X — RU{oco}. For each
n €N, let x,, € X be a minimizer of F,, on X. Then, every cluster point x € X of (xn)n is a
minimizer of F, and

F(x) =limsup F,(zy).

n—oo
If the point x € X is a limit of the sequence (xy,)n, then the above limsup is actually a limit.

3.3. Sets of finite perimeter. We recall the definition and some basic facts about sets of finite
perimeter that are needed in the paper. For more details on the subject, we refer the reader to
standard references, such as [1, 24, 27, 32].

Definition 28. Let £ C RY with |E| < oo, and let A C RY be an open set. We say that F
has finite perimeter in A if

P(E;A) = sup{/ divpdzr : ¢ € CHA;RY), |lollp~ < 1} < 0.
E

Definition 29. Let a,b € RM. We define the space BV (£2;{a,b}) as the space of functions
u € LY RM) with u(x) € {a,b} for a.e. x € , and such that the set {z € Q : u(r) = a} has
finite perimeter in 2.

Definition 30. Let £ C RY be a set of finite perimeter in the open set A C RY. We define
O*E, the reduced boundary of E, as the set of points z € RY for which the limit

ve(z) = —lim Dxp(B,r))
r—0 ’DXE‘(B(l',T))

exists and is such that |vg(x)| = 1. The vector vg(z) is called the measure theoretic exterior
normal to E at z.

We recall part of the De Giorgi’s structure theorem for sets of finite perimeter.
Theorem 31. Let E C RY be a set of finite perimeter in the open set A C RN . Then,
P(E,B) =H""1(0*En B),
for all Borel sets B C A.
4. TECHNICAL RESULTS

4.1. Estimates for sequences with uniformly bounded energies.
Let (uy)n, C WH2(Q; RM) be a sequence such that

sup F\V (u,) = C < +00.

Then,
1 1 C
||Vun||i2(Q-RNXM) :/ |Vun|? da = / en|Vuy|* dz < *Fqgl)(un) < —
’ Q €nJa €n €n
Using the chain rule from (21) and from (22) we can therefore deduce that
52
IV Ui |22, r2 gy manary) < Ol Vunll 2 ey <y < O, (23)

€n
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2
U
||vy2u2un||%2(Q;L2(Q1><Q2;RN><M)) < 77121||VUn||L2(Q;RNxM) < Csfn' (24)

n
We will now state a theorem that is needed for a key-step of the proof. We will only give the
proof for the second formula involving the two-scale unfolding operator, and we refer to |16,
Theorem 3.2| for the proof of the first one.

Theorem 32. Let (uy), C W1Y2(Q;RM) such that

sup F) (u,) = C < +00, sup ||tunllec < M < 400.
Then, it holds that
[V = un 7012y o)) < Cns (25)
) T
HZ/[QUn - Z/{lu'n,HL2(Q;L2(Q1;L2(Q2;RIM))) < Ca- (26)

Proof. As the proof of (25) involves the same steps as the proof of (26) but with less details, we
will only focus on the latter, and refer to [16, Theorem 3.2| for the proof of the former.
For z € Q,y1 € @1, we define

(Uatin) Qs (7, 1) = / Uzun (2,91, y2) dyo.
Using the triangle inequality, we rewrite 2
U, — ulun”?;? = lUoun — Uzun)q, + (Uztn)q, — ul“n”%qg;p@lXQQ;RM))
< 2|Uzuy — (UQUTL)QQ”%Q(Q;LQ(leQQ;RM)) (27)
+ 2/l (Uaun) @, — Urtnl| T2 r2( gy xguiryy (28)

We first estimate the first term on the right-hand side of (28). Let us fix z € Q and y; € Q1.
Using the Poincaré-Wirtinger inequality on ()2 we can write

/ Unt, — (Upun)gu? dyn < C / 1V ot ? g
Q2

2

Integrating over 2 x @1 and using (24) we get
2
2 2 n
[tatn = Uaun)Ql[12(0:12(Q1x@uminy) < ClIVilletinllLzo:n2(Quxqumnxany < €T (29)
We now estimate the second term on the right-hand side of (28). We get

/ U, — (Usn) g, |? dyr d
QxQ1

= /A R ]Ulun — (Z/{Qun)Q2 ’2 dy; dz + / L |Z/{1un — a|2 dy; dz. (30)
Q5 xQ1,n (QxQ\ (s xQ1,1)
We estimate now the second term of the right-hand of (30). We have

(2 x Q1) \ (s x Q1) = (As X Q1) U (5 x Ar).
Since Uru, = a on Ag x @1, we get

Uiy, — al? dy; dz = /A Ui, — al* dyr dz < Cgla (31)

Q(;XALW n

/(QXQl)\(ﬁaX@Ln)
where the last step follows from the fact that u,, and therefore also Uy u,, is uniformly bounded
in L°°.

We now estimate the first term of the right-hand side of (30), and for this we need to use the
partial unfolding U5 ;. By definition of U we have that

Us Uty = Ua . (32)
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We now prove that
Usy(Ustin)q, = (Ustin)Q,- (33)

To do this, it is a matter of a tedious but easy computation:

Us .y (Uauin) @y (5 Y1, Y2)

n 5le n{é x } U
= (Upuy, T, = |—| —=4-1|= + =
(2 )QQ( 5 \‘ 7] Q2 5 77\~6JQ1 QQ 53/2
n | oy nfo|x n
L2 1Y )
/2 ( olnlg, © nL(SJQl 0 0
T ) 17{5 QJ 77{5 T } n {5 T }
e B e Bl el I e B el + 5y AT +1y2 | dy
/QQ _5JQ1 BE (5 nlo, © nLSJQl o 7)1, 7 n[aJQl o0, )

(Bl 2], - Loy v, {8 Bl S, o) e

T 0yo 6 |x
- un6+{J—{}+ydy
/Q2 (—5JQ1 T Os ! 17{5JQ1 0s G A

=/ Ustp (2, Y1, y2) dy2 = (Usun) Q. (2, Y1)

2

Therefore we now have:

ﬂ  Uhtn — Uhaun)gul? (2, 31) dypn da
QsxQ1,n

- /A Z <Z>N/Q L, — (UQUH)Q2‘2 (xv g& - gbln + gw) dyz dx
2

s §2€E2

= > / / Uy, — Usuin) g, | <ar g& — gLQ,n + gw) dyo dy; da
s £2€E9 $a—Frant$Q2 JQ2

= /A /A Us y U ur — (Z/{gun)Q2|2 dys dyy dz.
Qé Ql,n Q2

At this point we can use the linearity of the unfolding operator, together with (32) and (33) to
see that on Q1 x Q2, where Us ,, is properly defined, we have

Us Uiy, — Uoun)gu|” = [Usylhiun — UsyUstin)q,|* = Ustiy, — Uaun) o] -
Substituting back we get

/A /A / Us y U urn — (Z/lgun)Q2|2 dys dy; do = /A /A / Uy, — (I/Igun)Q2]2 dyo dyy dx
Q5 JQ1,n J Q2 Qs JQ1,n J Q2
= / / / ‘Ugun — (Z/{QU”)QQ‘Q dy2 dy1 dx
Q 1 2

2
= lltfatin — Uaun) sl z2(;12(Qu x@umary) »

where again we used the fact that Usu, = a on (2 x Q1) \ ((AZ(; X Ql,n) X Q2. To sum up, we
proved that

/ﬁgxé1 U ur — (Z/[QUn)Q2|2 dyy dz = HUZUn - (Z/{QUTL)QQH%Z(Q;L2(Q1;L2(Q2;RM))), (34)
n

where in the L? norm we put back the boundary sets, as they add zero contribution to the
integral.
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Using (28), (31), (34) and (29), we get

n2 T
2 n
etz — UrtinlTa(0;12(Q x uirary) < € (sn * 6n> =5,

where the last inequality comes from 7, < §, < &,. O

4.2. Definition and properties of the auxiliary cell problem. We first need to define an
auxiliary cell problem that will be needed in the proof.

Definition 33. (Auxiliary cell problem) Define the function W¢: RM — [0, +00) as

W(z) = inf inf / W (y1,92, 2 + ¥1(y1) + ¥2(y1,y2)) dy2 dy1,
¢1€A§ wzeAg 1JQ2

where the admissible classes A§ and Ag are given by:

AS = {"lm e Wh(QuRM) 1l 2@y < E NVl 2 mryxmy < 1}7
A = {1112 € L*(Q1; WH2(Qa; RM)) 120l L2001 x Qo) < & I Vyath2(y1, )l L2(omivxary < 1}'

Theorem 34. (Properties of W¢) The following hold:
(1) For every z € RM | the infimum problem defining W&(z) is well-defined, i.c. admits a
minimizer;
(2) W¢ is continuous;
(8) There exists r(§) > 0, with r(§) — 0 as & — 0, such that
Wé(z) =0 <= z € Bla,r(§)) UB(b,7(€));

(4) For each z € RM  W¥(2) converges increasingly to

Wh(2) 3:][ Wy, y2, z) dy1 dya
1/Q2

as € — 0. Moreover, W& converges uniformly to W™ on every compact set.

Proof. Step 1: Proof of (1). We first prove that we can reduce to competitors which are
bounded in L°°, and then prove the desired claim.

Step 1.1: Reduction to ¢ being uniformly bounded in L*>. Let M > 0 be big enough
such that M > R, where R > 0 is the constant appearing in (H3). Let ¢pr: [0, +00) — [0,1] be
a smooth cut-off function such that

em(t)=1 tel0,M], em(t) =0 te2M,+00).
We now modify W such that it is linear outside of a ball of radius 2M: to do that, we define
War: RY x RV x RM — [0, +00) as

~ ||

Wt (y1,y2,2) = e (D)W (y1, y2, 2) + (1 = om(|2)) 5
We now prove that if

Wé(z) = inf__inf / Wt (1, 2, 2 + ¥1(y1) + 2(y1, y2)) dyr dye (35)
P1EAT e A5 JQ1 Qo

where
16— w2 -RM)y . <M_B < <
Aj =11 € (Qu;R™) : [[¢h1]loo < 5 1V1llz@umiy < & IV Yrllz@umnany < 1¢
]

A= L e 2@ 2@Qur) sl < v - L
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120 2200y x Qo) < & Va2 (Y1, )l L2 (Qumaxnry < 1},

then Wf(z) < W&(z). We now need to define the truncation operator Ta;: W1h2(; RM) —
L2 (4 RMy n WL2(Q; RM), defined as

_ Jul@) u(x)] < M,
Taru(z) = {Mﬁigg' lu(z)| > M. (36)

Let us now take two competitors for the original problem, 1, € A§ and 1y € Ag. We define the
truncated versions of these by

)y = TM_%% eA;, o= TM_%\% € A,

which are easily seen to be competitors to the modified problem. This choice of truncation with

M — % will not be a problem, as in the liminf we will also require u, to be uniformly bounded.
Therefore, using (35) and (H3), we have

We(z) S/ War(y1, y2, 2 + 91 (y1) + P (y1, o)) dyr dye
1JQ2

S/ War(y1, y2, 2 + 1 (y1) + a1, o)) dyr dye
1JQ2

S/ W (y1,y2, 2 + ¥1(y1) + ¥2(y1, y2)) dyr dys.
Q1 JQ2

Taking the infimum over ¢ € A§ and 1y € Ag, we obtain the definition of the original problem,

and we get W¢ () < W&(z). This implies that we can always lower the energy by considered
this modified auxiliary problem with 1 and 1 bounded in L°°. This is enough for the proofs,
as the purpose of the auxiliary problem is exactly to lower the energy. Therefore, from now on
we can assume ¥, 12 to be bounded.

Step 1.2: Existence of a minimizer. Fix z € RM  and let (1), C .A§ and (¢8), C A§
two sequences dependent on z, such that

/ W (1,42, 2 + 97 (01) + 05 (y1,92)) dyadyy — WE(z)  n — oo.
1/Q2

By definition of Af and Ag we know that (¢7), and (% (y1,-))n are bounded in L? for a.e.
Y1 € Q1, therefore up to a subsequence they have weak limits, respectively 1 € L?(Qq; RM)
and 99 € L2(Q1; L?(Q2; RM)). The sequences are also bounded in W2, therefore we also have
0 € WI2(Q13 RM) and ¥9(yn, ) € WE2(Qq RY) for ae. y1 € Q1.

In order to prove that ¢ € A§ and ) € Ag, we need to prove that the bounds on the L2
and W12 norm still hold. We claim that due to the uniform bound on the gradients, we have
that ¢7 — ¢ strongly in L2(Q1;RM), and that ¥%(y1,-) — ¥9(y1,-) strongly in L?(Qg; RM)
for a.e. y1 € @1, thanks to Rellich-Kondrakov theorem.

Thanks to the weak lower semi-continuity of the norms, we then get

||w?HL2(Q1;RM) < lﬁgf ”w?HLQ(Ql;RM) < §7
||Vy1¢?”L2(Q1;RNxM) < linﬂiio%fHvyW?HL?(Ql;RNxM) <1,
which proves that 1 € Af. In a similar way we get
8001, 2oy < limind 93 (1, )| uimry < &
IV, 15 (y1, M 2wy < hnlgiogfHvyzl/fg(yla')HL2(Q2;RNxM) <1,
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which proves that ¥) € .Ag.

We can then conclude thanks to the boundedness assumption on W and uniform continuity
of W on B(0,0,2M) (thanks to 11,192 being bounded), which allows us to use Dominated
Convergence Theorem:

lim / 0 W (y1, y2, 2 + U7 (y1)+3 (y1, y2)) dyr dye
1 2

n—oo

:/ 0 W (y1,y2, 2 + 97 (Y1) + ¥3 (1, y2)) dy1 dys
1 2

Step 2: Continuity of W¢. Take a sequence (zn)n C RM such that z, — zo € RM. From

Step 1 we know that for every z, there exists minimizing functions 7" € A§ and ¢y € Ag such
that

We(z,) = /1 o, W (y1,y2, 2n + 97 (Y1) + 93 (Y1, y2)) dyr dye.
Same holds for zg, namely there exists ¥ € Af and 9§ € A§ such that
W)= [ Wm0+ (o) + hlon )
17Q2
Ussing ¢} and 1% as competitors in the problem defining W¢(zp), we get
W (z0) < / 0 W (1, y2, 20 + T + ¥y) dy dys. (37)
1/ Q2

We now want to write z, instead of zy in the argument of W. We then write

W(y1,y2, 20 + 1 +¢3)
<W(y1,Y2, 20 + 91 +93) + W (y1,y2, 20 + 91 +93) — WY1, 2, 20 + 97 +95)[ . (38)
Since the competitors are uniformly bounded, we have
Jim Wy, ya, 20 + 97 +95) = Wy, y2. 20 + 97 +¢3)] =0,
for all y; € @1 and y3 € Q2. Then, using Dominated Convergence Theorem, we can conclude

that

n—oo

nm/ / W (g1, 92, 20 + 07+ 03) — Wyt ya, 20 + 07+ 48)] dyr dy = 0. (39)
1 2

Therefore, from (37), (38) and (39) we obtain that

n—o0

W¢(2) < lim inf/ o W (Y1, Y2, zn + 97 + ¢5) dy1 dys = lim inf We(zn). (40)
1/Q2
For the other inequality we use ¥ and ¢§ as competitors in the problem defining W¥(z,).
This yields
We) < [ [ Wl o+ o +08) dy doe. (41)
We now want to write 2y instead ocilanfn the argument of W. We then write
W (y1,y2, 2n + 9] + 13)
<W (y1, 92,20 + ¥ + 09) + [W (Y1, y2, 20 + 90 +99) — W(yr, y2, 20 + 0F + 49)|  (42)

Since the competitors are uniformly bounded, we have

nh—)ngo ’W(yl»?/% Zn + ¢? + 7/)(2)) - W(y17y27 Zo + QIZ)? + 1/13)‘ = Oa
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for all y; € @1 and y3 € Q2. Then, using Dominated Convergence Theorem, we can conclude
that

nm/ / W (51, 2, 70 + O3+ 08) — W (g1, y2, 20 + 07 +95)| dyr dys = 0. (43)
1 2

n—0o0
Therefore, (41), (42) and (43) give us that
lim sup W¥(z,) < / W (y1, ya, 20 + 17 + 3) dyy dya = W(20). (44)
n—oo 1JQ2

Thus, from (40) and (44) we conclude that
le We(zn) = We(20),

as desired.

Step 3: Double-well behavior. Let z € {a,b}. Take now ¢; = 0, 12 = 0 as competitors
in the definition of W&(z), to obtain that

We(z) < / W (y1,y2, z) dy1 dyz = 0,
1JQ2

since z € {a, b} implies W (y1, y2,2) = 0 for all y; € Q1, yo € Q2. Since W&(z) > 0, this implies
W& (z) =0if z € {a,b}.

Let now z € RM be such that W¢(z) = 0. Using Step 1, we know that there exist minimizing
functions 11 € A§ and 1y € .Ag such that

/ Wyt y2, 2 + ¥1(y1; 2) + ¥2(y1,y2; 2)) dya dyr = 0.
1Y4Q2

As W(y1,y2,p) > 0, this implies

Wiyr,y2, 2 + h1(y1; 2) + Y2y, 42;2)) =0 for ae. y1 € Qu, 12 € Q.
Using (H2) we now know that this implies

z+1(y1;2) + P2(y1, y2; 2) € {a, b} for ae. y1 € Q1,2 € Qo
Let’s fix now also y1 € Q1. We are left with

z+P1(y1; 2) + a(y1, y2; 2) € {a,b} for a.e. y2 € Q2,

which can only be true if the function y; — 12(y1,-; 2) is a constant ¢; depending only on ¥
(and on z as a parameter). Keeping in mind that 15 is bounded in L? and in L, since ¢3 — 0
in L? as € — 0, using Egoroff theorem we get that 105 — 0 uniformly on a compact K C Q1 x Q2
such that £V ((Q1 x Q2) \ K) < ¢, for an arbitrarily small ¢ > 0. This in particular implies that
c1(y1;2) — 0 uniformly on the compact given by the projection of K to Q.

We now have

z 4+ ¥1(y1;2) + c1(y1;2) € {a,b} for a.e. y1 € Qq,

and this can only be true if ¥1(y1;2) + c1(y1; 2) is a constant. Due to the definition of the
auxiliary problem though, it is clear that this constant must be bounded. Using now the same
reasoning as before, since 1 + ¢; — 0 in L? as & — 0, using Egoroff theorem we have that
Y1 + ¢1 — 0 uniformly on a compact set K; C Q; with £LV(Q \ K1) < . Summing everything
up, for £ sufficiently small, this implies that on an arbitrarily big compact set K € Q1 X Q2, we
have that ¥1(y1;2) + ¥2(y1, y2; 2) must be bounded by a constant 7(§) such that r(§) — 0 as
&— 0.
Therefore we have that z € B(a,r(£)) U B(b,7(§)), which we can always assume disjoint for £
small enough.




22 RICCARDO CRISTOFERI, LUCA PIGNATELLI

Step 4: Convergence of W¢ as ¢ — 0. Fix z € RM_ and let &1, & € R such that & < &.
it is possible to observe that

A§1 C ./4?2, Agl C A§2’
which implies
W2 (z) < Wo(2).
Therefore Wg(z) is non-increasing in &, and since Wg(z) > 0, this in turn implies that the limit
exists and is finite. Let’s now take a sequence (&), C R such that &, — 0 as n — oco. To
each &, associate the respective problem Wén(z), which, by Step 1, will have two minimizing

functions ¢} € Aﬁ” and ¢y € Aﬁ”, such that
Wé (2) = / W(y1,y2, 2 + 97 +¥3) dyr dya.
17Q2

We now want to study the behaviour of Wén(z) as &, — 0. We know already that
197 | L2 irry < €5 195 | L2(Qus22(Qair MYy < §-
This therefore implies that
P =0 in LX(Qu;RM), % =0 in L*(Q1; L*(Q RM)).
Then again, using the uniform bound on the competitors, the boundedness assumption on W
and Dominated Convergence Theorem, we get that
lim W (z) = Wh(z),

n—o0

where W1 (2) is given by
Wh(z) = / W (y1,y2, 2) dy1 dya.
1/Q2

Since the convergence is non-increasing, we can use Dini’s Theorem to deduce that the conver-
gence is uniform on compact sets. (]
4.3. Limit of the auxiliary surface tension. The goal of this section is to prove that

h

lim ¢ = o,
£—0

where

1
05:M{/¥2PW@@MY@dhv€MMFLwRM%%4)=mWD=b} (45)

First of all, we show that
1
o* = min {/1 20/ WE(v ()Y ()] dt =y € Lipze([=1, 1;RYM), (1) = a,7(1) = b} :

where Lipze([—1,1]; RM) is the space of continuous curves which are Lipschitz continuous with
respect to the Euclidean metric on any compact portion of the curve that does not intersect

2% = B(a,r(€)) U B(b,r(€)).
Here, 7(£§) > 0 is given by Proposition 34.
Remark 35. Recall that

lim r(€) = 0. (46)

In particular, we can always assume that £ is small enough so that B(a,r(§)) and B(b,r(§)) are
disjoint.
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The strategy of the proof is similar to that employed to prove [41, Theorem 2.6]. Therefore,
we only highlight the main change. Consider the functional E¢ : Lipz([—1,1;R™) — [0,00)

defined as )

Ef(y) = / We(v ()Y (6] dt.

-1
for p,q € RM | set

d D, q 1nf{/ Eg "(t)|dt : v € Lipge([— 1,1];RM),’Y(—1)—277’Y(1)—Q}-

Remark 36. Note that the function d : RM® x RM — [0,00) defined above turns out to be a
quasi-metric. Indeed, if p,q € B(a,r(§)) or p,q € B(b,r(£)), then d(p,q) = 0 does not imply
that p = ¢q. Nevertheless, it is possible to see that d is a metric on RM/ ~, where p ~ ¢ if
p,q € B(a,r(€)) or p,q € B(b,r(£)). In this way we get that (R™/ ~, d) is a length space.

Let £ > 0, and fix p,q € RM such that p € B(a,&) and ¢ € B(b,£). Take a curve vy €
Lipz¢([—1,1]; RM) such that v(—1) = p and (1) = ¢. In light of the minimization problem

defining d¢(p, q), without loss of generality, we can assume that there exist —1 < t§ < ti <1
such that

v(t) € Bla,r(€)) forall t € [-1,§], y(t) € B(b,7(€)) for all t € [t5,1].

We observe that

lim tg -1, lim tg — 1.
£—0 £—0
Define 5 € Lipze([—1,1]; RM) as

p+%(v(t§)—p)(t+1) te[-1,-3),

F(t) =< v <t§ + 22 (3t + 1)) te[-1,4],

L= 300(t5) —a)t—1)  te[31).
Note that 7(—1) = p and 7(1) = ¢, and that

1 1
E@) = / FE)F ()] dt = / FE®)F ()] dt

€
<t5+ Qt (3t+1)>'2)t§

= [T e eas= [ FaeR e = E
Therefore, in the following, we will always assume that

v(t) € Bla,r(£)) forallte [—1, _zﬂ , v(t) € B(b,r(£)) forallt e [; 1] .4
Define the length functional as

L= sup 3 dG(t), T (ten)),
() CP

where P is the set of finite partitions of [—f ] With these definitions, the proof of [41,
Theorem 2.6| yields the following,.
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Proposition 37. Fiz ¢ > 0. For every points p, ¢ € RM there exists a curve v* € Lipze([-1,1]; ]RM)
such that
d(p,q) = E(v") = L(v"),

where we assume that the curve is parametrized to satisfy (47).

Now, for p,q € RM define
d’(p, ) = lim d*(p, q).
£—0

Note that the limit exists, since the function W¢ in increasing (see Proposition 34). Using the
same strategy as in |17, Lemma 3.5], we get

Lemma 38. The function d°: RM x RM — [0, 00) is a metric on RM.

We now need a technical result whose proof follows the same lines as those of the proofs of
[17, Lemma 3.6, Proposition 3.7]. Indeed, since we only restrict ourselves to the region where
the curve lies outside of its zeros, we are in the same exact assumptions as Moreover, note that
by (46), the zeros of W& collapses to the points a and b, as & — 0.

Proposition 39. Let (&), be an infinitesimal sequence, and for eachn € N, let e, be a geodesic
of d*n(a,b). Then, up to a subsequence, there exists vo € Lipz([—1,1];RM) with v(—1) = a,
~v(1) = b such that

lim sup do(%n (t),70(t)) =0,

n—oo
tE[*%,%}

Moreover,

1
d%(a,b) = lim [ 24/W¢(y0)|ng| dt.
-1

Remark 40. Note that the above result holds for every pair of points p,q € RM as end points
in place of @ and b, respectively.

We are now in position to prove the main result of this section.

Proposition 41. [t holds that

lim o¢ = ah,
£—0

where o€ and o® are defined in (45) and (16), respectively.

Proof. Step 1: we show that ¢® < o". Since W¥¢ is increasingly converging to W as & — 0
(see Proposition 34), this follows from the definition of .

Step 2: we show that ¢® > o, The proof follows the same lines as that of [17, Proposition
4.6]. We report it in here for the reader’s convenience. First of all, note that since
lim o¢ = sup 05,
=0 £>0
that we get the desired result if we prove that there exists an infinitesimal sequence (&), such
that

lim o > ol
n—oo

Let 4o € Lipz([—1, 1]; RM) be the curve given by Proposition 39. For n € N\ {0}, define

= {t € [_17 1] : VO(t) §é B (av""(gn) + ;) } s

T {t €-1,1] :7o(t) ¢ B <b,r(§n) + ;) } .

3

(S
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Note that, by assumption (47), we have that

TrCLL = [_Ltmv Tr(zl = [tl;w ”v
where
: a _ : b —
TIEI.];)IIOIO te = —1, 71113010 t, = 1. (48)
Moreover, note that, since 7 is Lipschitz in [t?,#%], it holds that

t
L, = / [vp] dt < oo,
t

for all n € N\ {0}. Let R > 0 be such that vy(t) € B(0, R) for all ¢t € [-1, 1]. Using the uniform
convergence of W to W, we can find an infinitesimal sequence (&,),, such that

1
[VWen — v Wh”CO(B(o,R)) < L. (49)

a
n

for all n € N\ {0}. Thus, for each n € N, we get

1 1 tb
= s / 2\ /We (o) g dt = / 2/ W (7o) b dt > / 2\/Wer (70) | dt
> -1 —1 t%

" &
> / 2/ Wh(r0) | it — 2/
154

t

VWe (30) = /Whino) | 1

a
n

t% 1
z/ 2\ /Wh(o) il df — L,
+ n

where in the last step we used (49). Taking the limit as n — oo on both sides, and using the
Dominated Convergence Theorem, yields the desired result. (]

5. COMPACTNESS
In this section we prove Theorem 6.
Proof. Let (un)neny € WH2(Q; RM) be a sequence such that

sup F(V (u,) < C < +00.
neN

Using (H3), we have

1

sup/ [Wl(un) + 4|V, |?| dz < sup F() (uy,) < C < 4o0.

neNJQ LEn neN

This allows us to use the methods of [26] in order to extract a subsequence (up, Jreny C WH2(Q; RM)

such that u,, — u € BV(Q;{a,b}) strongly in L!(;RM). O
6. LIMINF INEQUALITY

The goal of this section is to prove the following proposition.

Proposition 42. Let (uy)nen € WH2(;RM) be a sequence such that u, — u € BV(Q; {a, b})
strongly in L' (Q;RM). Then, it holds that

lirginf EW (u,) > FO(w).
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Proof. Step 1: Reduction to uniformly bounded u,, and W linear outside of a ball. Let
M > 0 such that M > R, where R > 0 is the constant appearing in (H3). Let ¢ps: [0, +00) —
[0, 1] be a smooth cut-off function such that

=1 t € [0, M],
SOM(t> € (Oa 1) te (M’ 2M)a
=0 t € [2M,+00).

We now modify W such that it is linear outside of a ball of radius 2M: to do that, we define
Wi RY x RV x RM — [0, +00) as

War(y1,y2, 2) = oar(|2)W (y1, 2, 2) + (1 — ¢M(|z|))|ZR’.

Observe that this function still satisfies all the needed assumptions, that is (H1), (H2), (H3) and
(H4). In this way, we have

N :W(ylvaaz) |Z| SMv
Wt (y1,y0,2) { > 12 2| > R,
= 2| > 2M.

We can then define

F = —W —, — n .
n’M(U) /Q [5n M <5n’ 77n71)> e |vv| :| do

Our goal is to now prove that, if
FO (u) < liminf FL), (vn), (50)

holds for all u € BV(€Q; {a,b}) and all sequences (v,), C W12(Q;RM) such that v, — u in
LY RM) and [Jvy||oo < 2M, then

FO () <liminf FY (u,,), (51)

& n—00
holds for all sequences (uy,), C W12(Q;RM) such that u, — u in L'(Q;RM).
Let us fix u € BV(Q;{a,b}) and a sequence (uy), C W12(Q; RM) with u,, — u in L*(Q; RM).
Using the truncation operator defined in (36) we define
Up lun| < 2M,
2M A |un| > 2M.

U = Topun = {
Jun|
It is an easy consequence of this definition that

|Vun| = [VTanrun| < [Vug. (52)

Observe that ||v,|lcc < 2M for every n € N. Therefore, (50) holds if we prove that v, — w in
LY (;RM). Using the triangle inequality it is enough to prove that v, —u, — 0 in L*(Q;RM),
as

[[vn — UHLl(Q;RM) < v, — unHLl(Q;RM) + llun — uHLl(Q;RM)-
The definition of truncation operator yields that:

lin — vall s gy = / i, — vy da
Q

:/ |un—un\dx+/ |ty — vy | dz
{lun|<2M} {lun|>2M}

- / |ty — 0| Az, (53)
{Jun|>2M}



PHASE SEPARATION IN MULTIPLY PERIODIC MATERIALS WITH FINE MICROSTRUCTURES 27

Now let A, = {z € Q : |u,(z)| > 2M}. Using Chebychev’s inequality and Assumption (H3) we

have
1
A, < 2]\4/ [up | dz < < / lup | dz < 2]:4 W (;;, ;n,un> dz < c%en.

Going back to (53), using trlangle inequality and Assumptlon (H3) we now have

ltn — vall 1 ey = / [ — va] dz
An

g/ ]un|dm~|—/ (o] dz

An A,

<rR[| w(Z %, dx+/ oM da
An On M .

gR/W L L un) dz+ 2M (A,
Q on n
< cRep + cRe, = Cey,

and therefore we conclude. _

In order to prove (51) we need to prove that FT(LIJ)\/[(Un) < F,(Ll)(un). This, together with (50),
will let us conclude. 7

From the definition of A,, and the truncation operator we have that for x € A,, it holds

un(2)| > 2M = [Tonrun ()] = vn(z)].

Therefore, for € A,, we have

Tz lun(z)| _ |vn(z)| T
— = > — .
W <5n nn,un(fv)) 7 2 =R = Wy 5 nn,vn(ﬂi)
For x € Q\ A, it holds that v, (x) = Toprun(z) = un(x), therefore

War (o Zua(e)) = s (2 nlo)).
This implies that

o X X X X o i
w22 <W L <wi(L X
M<5n’77n7vn( )) M((Sn nn,un(fﬂ)) < (%’%’un(w))’

which, together with (52) allows us to conclude.
Therefore from now on we assume that W has linear growth at infinity and that ||uy, || < 2M.

Step 2: Let (uy), C WH2(;RM) be a sequence converging to u € BV(Q;{a,b}) in
LY RM), such that ||us|/eo < 2M. We claim that

(1 ) ) > §(
hnni)ng l%nni}géf/ 20/ W&(up)|Vuy,| dz. (54)

ﬁn = {l’ cN: Hvyll/llun(% ')HL2(Q1;RNXM) = 1}’

Qua(z) = {y1 € Q1 : |Vylhatn (@, y1, )| L2(Qpirvnry < 1},
Using Chebychev’s inequality we have

Let us define now

~ 672L
|2\ Q] < /Q Hvylulun<$7 ')“%2(Q1;RN><M) dz = HvylulunH%Z(Q;LQ(QURNX]W)) <ec— —0.

€n

For @Ln(az), using again Chebychev’s inequality we have that

Q1 \@Ln(x” < / IV y Uz un (91, ')H%?(QQ;RNXM) dyr = || Vylhoun(z, -, ')||%2(Q1XQ2;RNxM)-

Q1
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Note that _
|1\ Qin(x)] < Q1] =1,
and that

|10\ @@ e < [ 190000, gy vy

2

2 Ui

- vaz’[?unHL?(Q;L?(Qlng;RNXM)) < Cf
n

— 0,
from which we can conclude that

Q1 \ @1n(az)| —0 for a.e. = € Q.

Let us also define a variation of the auxiliary problem. Take z € RM and K C Q1 a compact
set. Then we define W¥(z, K) as

Wé(z,K) == inf inf/ W (y1,y2, 2 + ¥1(y1) + 2(y1, y2)) dya dy1,
e As e A JK Qo

where .A? and Ag are defined as in Definition 33. Note that if K = Q1, then W&(z, Q1) = W¥(2).
Thanks to the non-negativity of W, together with Lemma 19, we have

/W<x,x,un(x)> dacz/~ /~ W (y1,y2, Usuy,) dya dy; dz.
Q on M O JG1n(2) J Qo

We rewrite this last equation as
/~ /y W (y1, y2, un + Uttty — up] + Uiy, — Uruy]) dyr dys da.
Q'n l,n(x) QZ

Let us define the following functions:
Y1(y1;2) = Urun(z,91) — un(x), Yo (Y1, yo; ) = Usun (2, Y1, y2) — Urun(z, y1).
Thanks to Theorem 32, we know that

n
1l 20s2(@urry) < CV/ Ons 1V2ll L2(@:L2(QuiLz(@aminy)) = Cy [ 5 (55)

n

and since |91 |co < 2M and ||1)2]|ec < 2M, we also have that
Tn
11l L2y mmy < CV/ 6, 120l L2012 (Qamryy < Cy 5 (56)

Thanks to the definitions of £, and @ML (z), we also know that
Hvyﬂﬁl(l’a ')HL2(Q1;RNxM) <1, ”vysz(x’yh ')HL?(Q2;RNXM) <L
We now need to prove that ¢, € A§ and 1y € Ag. Fix £ > 0. Then, take n large enough such

that
max{m, Z”} <t

This is possible since all these quantities are infinitesimal for n — oco. Thus, (55) and (56) yield
that 17 and 19 are admissible functions for the problem defining Wf(un(x), Q1n(2)).
We can therefore write

/~ /y " W (y1, yo, Usti) dya dyr daz > [ WE(up (), Q1 () da
n 1,n (T Q2

Qn
_ / WE(un(2), Orn(z))dz — | WE(un(x), Orn()) da
Q QA2
We claim now that
lim W (un(z), Qrp(x)) dz = 0.



PHASE SEPARATION IN MULTIPLY PERIODIC MATERIALS WITH FINE MICROSTRUCTURES 29

This is easy to see, since by non-negativity of W and Assumption (H4) we get that
W (un(2), Qi) dz < [ W (up(x))dz < Copr|Q\ Q] — 0.
O\, O\,
Therefore we are left with

liminf/ w <x,x,un(az)> dz > liminf/ Wg(un(a;),élm(x))dx
Q Q

n—00 on, Mn n—00

Take now 11 and 1) as minimizing functions for the problem defining W& (u,(z), éln(x)), and
define

0 y1 € Q1\ Quala),
Va(z,y1,92) Y1 € Qunl(z).

Note that 11 and ibvg are admissible competitors for the problem defining W& (u,(z), Q1).
Using these modified competitors, we have

/ W (un (), @1n(x)) dz
Q

@ZQ(%?JLZW) =

= / /~ W (y1, y2, un(x) + Y1(z,y1) + ¥2(z, y1,y2)) dy2 dy1 do
Q1,n(z) JQ2
= / / W (y1, Y2, un () + 1 (z, y1) + Ya(2, y1, o)) dys dys da
1JQ2

- / / _ W(y17y2, Un(ﬂﬂ) + wl(l‘,yl)) dyo dy; d.
Q1\Q1,n(z) /Q2
Our claim is that

lim // N W (y1, y2, un(x) + ¥1(x,y1)) dy2 dys dz = 0.
Q1\Q1,n(z) JQ2

n—o0 Q

This is straightforward using Assumption (H4) and the fact that |[1]/cc < M — M, which
imply

- W (1. 92, un(2) + 1 (2, 51)) dyz gy der < Conr| Q1 \ Gra(a)] — 0
Q1\Q1,n(x) J Q2
Therefore, since 1; and {/;2 are admissible competitors, we can further lower the energy by

liminf/ w (a:’ x,un(aj)> dz > liminf/ W (up (), Qrn(z)) dz > hmlnf/ W (up (x
Using this last inequality, together with Young’s inequality, we get
liminf F{M (u,) = liminf/ [1W (;,;,un(x)) +€n|Vun(x)\2] dz
Q n TIn

n—00 n—oo En

> lim inf /Q {;Wg(un(x))—i—EMVun(x)F] dz

n—oo

zliminf/Q WE(up(2))|Vuy(z)| de,
n—oo 0

which was our initial claim.
Step 3: We now want to prove that

n—oo

lim inf / 21 WE (1) | Vun| de > o Per({u = a}: Q), (57)
Q

where o¢ is defined in (45).
It is a well-known fact that in the case of a classic double-well potential, the functional in (54)
is bounded below by the perimeter functional . We briefly recall now the proof in [26, Theorem
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3.4], to show that nothing changes in the case of compact wells (see (15) and (16)).
By compactness, we know that u, — ug € BV(Q;{a,b}) in L'(Q;RM). Let us define the
auxiliary function ¢¢: RM — R as

= inf {/ 20/ WE(y ()7 ()| dt : v € Lipz([—1,1; RM), ~(=1) = a,v(1) = z} :

We prove that this function is Lipschitz continuous. Take 21, z2 € RM and take v € Lipz([—1, 1]; RM)
such that v(—1) = a and (1) = z1. With this curve we create another curve, which is going to be

an admissible competitor in the infimum problem defining (% (22), that is vo € Lipz([—1, 1]; RM)
such that v(—1) = a and (1) = 29, which is

- {7(2t+1) te[-1,0],

t
70( 21—|—t(22—21) te (O, 1].

Therefore we get that

F(z2) < / 23/ W0 (8)) I (1)

/ 20/ WE(y(2t + 1)) |29 2t+1|dt+/ \/WE (21 + t(ze — 21))|22 — 21| dt

< /12 WE(y ()1 (1)] dt + (tesz(l)p1 2\/W§ (21 +t(22 —z1))> |22 — 21].

Thanks to assumption (H4), taking the infimum over all v € Lipz([—1,1];RM) such that
v(—=1) = a and (1) = 21, we get
% (22) < ¢*(21) + Clzz — 2.
Writing the same procedure with z; and z9 swapped we find
% (22) = % (21)] < Clz2 — 21,
therefore proving that ¢¢ is Lipschitz continuous. Rademacher’s theorem then implies that

it is differentiable a.e. in R™. Take a differentiability point zy € RM. Using the previous
computations, we get

'3 — 5
lim lp*(2) — @ (ZO)| < lim sup 24/W&(20 +t(z — 20)) —2\/I/V£ (20),

z720 |z — 20 FTE01e(0,1)
where in the last step we used the continuity of W¢. Thus, this implies
IV (05 0 un)(2)] < 20/ WE(un ()| Vun(z)] for a.e. x € Q. (58)
We will now define the constant

o =it { [ WG 017 € Lipa (1,11 8Y),2(-1) = an(1) =)

Since <p5 is Lipschitz continuous and u, — ug in L', we also have <p5 o Up —> @5 ougin L. We
note that

ot =

©% o ug(x) = o*1p(x),
since ug € BV(Q;{a,b}). To conclude, using lower semi-continuity of the total variation and

(58), we get
liminf/ 20 W ()| V| dar > liminf/ V(€ 0 )|

> /Q |V (¢° o ug)| = 0 Per({u = b}; Q).
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This proves the claim.

Step 4: Conclusion. Using (54) and (45), we get that
lim iI\llnf FW (uy,) > 0f Per({u = b}; Q).
ne

Taking the limit as £ — 0, and using Proposition 41, we get

hmlI\?fF(l)( n) > o Per({u = b}; Q).
ne

This concludes the proof.

7. LIMSUP INEQUALITY
The goal of this section is to prove the following proposition.

Proposition 43. Let u € BV(Q; {a,b}). Then, there exists a sequence (un)neny C WH2(Q;RM),
such that u, — u strongly in L*(Q;RM) and
lim sup £ (uy,) < FO (w).

n—oo

In order to prove this proposition, we need some technical results, the first of which is an
approximation result for sets (see [6, Lemma 3.1]).

Proposition 44. Let E C Q be a set with finite perimeter. Then, there exists a sequence of sets
(En)n with E, € RN such that
e 0E, N is of class C?;
e HN-L(OE, N0Q) =0;
o lp, — 1g in L' (Q);
e lim FV(1g,) =F(1p).
n—oo

Corollary to this proposition, we also need the following result about a geometric property of
the tubular neighborhoods of a C? surface in RY.

Lemma 45. Let A C RN be an open bounded set with C? boundary, and let @ C RN be an
open bounded set with Lipschitz boundary such that HN~1(0Q N OA) = 0. Define the function
h: RN - R as
h(z) = —'dist(x7 0A) reA
dist(x,0A) x ¢ A
Then h is Lipschitz continuous and |Dh(z)| =1 for a.e. x € RY.
Moreover, define Sy == {x € RN : h(z) =t}. Then it holds
lim HNL (S, N Q) =HYHOAN Q). (59)
%
The next result is the key point in the original procedure by Modica-Mortola, as it ensures

the existence of a reparameterization of the optimal curve up to a small error (see [34, proof of
Proposition 2], |18, Lemma 6.3]).

Lemma 46. Fiz A\ > 0, ¢ > 0. Let v € CY([~1,1];RM), with v(-1) = a, ¥(1) = b, and
v'(s) # 0 for all s € (—1,1). Then, there exist T > 0 and C > 0 with

6<’7‘</ s)| ds,

and g € CY((—7,7);[~1,1]) such that

21y (g(t))]?
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forallt € (—7,7), g(—7) = —1, g(17) =1, and

T 1 1
[ |Ewtaton + v eoPe©F] as < [ 2wraeyels Vi [ e
(61)

Let A= {z € Q : u(x) = a}. Note that since u € BV(£2;{a,b}), it follows that A is set of
finite perimeter.

Proof. Step 0: Using Proposition 44 and a diagonalization argument, without loss of generality
we prove the result for u € BV(Q; {a,b}) such that A N Q is of class C? and such that
HNYHHANAN) = 0.

Step 1: Let u € BV(;{a,b}) as in Step 1. Fix ¢ > 0, and let v € C'([-1,1];RM) with
v(—=1) = a, v(1) = b, be such that

1
/ 2GR )]s < ot (62)

Without loss of generality, we can always choose v such that 7/(s) # 0 for all s € (—1,1).
Therefore we can apply Lemma 46 with

€ = Ep, A= <L(§7))2,

where L(7) is the length of the curve v, given by

1

L(y) = / |7/ (s)| ds < +o0.
-1

Therefore, for each n € N, we have 7, and g,, € C*((—7y, 70); [—1,1]) such that (60) and (61)

hold. Let now dist(-,0A): RN — R be the signed distance function from dA. Since 9A is of

class C2, by a classical result we know that dist(-,dA) is of class C'. Therefore,for every n € N

we define uy,: Q — RM as

a dist(z,0A) < —7p,
un () = < v(gn(dist(z,DA))) |dist(z, 0A)| < 7, (63)
b dist(x,0A) > 7.
Observe that ci1e, < 7, < cogy,, therefore 7,, — 0 as n — oo. This implies that u, — u strongly
in LY(Q;RM).
Let us now prove the convergence of the energies. We define
Ay ={z € Q:|dist(z,04)] <1} = |An] < cmpn. (64)

For each n € N, we partition A,, into four disjoint sets. To do that, we first have to partition
the set of generators at scale ¢, into two disjoint subsets:

I, ={& €G:0, (& + Q1) C ALY,
Ifl = {£1€G1:5n(f1+Q1)ﬂaAn7ﬁ®}.

In this way we divided the periodicity cells at scale ¢,, between those intersecting 0 A,,, and those

who are strictly included in A,,. For each & € IS we now define a partition of the generators at

scale g’—":
n

Jul6r) = {52 € Gy, (51 F I (6~ 1 Q2)> c An} |

n

Jp(&) = {fg € Gy : by ({1 + an (&2 — 1oy + Q2)) NoA, # (Z)} .
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@n

FIGURE 5. Subdivision of the interface layer

In this way we also divided the periodicity cells at scale between those intersecting 0A,,, and
those strictly included in 6, (& + Q1), for & € I€.

With these generators we can partition A, into three disjoint sets, given by (see Figure 5 for
a simplified idea of the subdivision):

= | (& +Qu),

El el,

=J U o (€1+ (& — L2,n+Q2)>,

ISESI ERSISHAY
R, =A,\ (P,UQy).
Using (64) we can easily deduce the following estimates.

’Pn| < crp, ’Qn’ < cop, ‘Rn’ < .- (65)

Our objective now is to estimate the value of Fél) (up), which, using the definition of the recovery
sequence, is equal to

1
Fr(zl)(un) = / |:W <xu xyun) +5n‘vun‘2] dx
Q LEn On N
1
:/ [W (x,x,un> +5n|Vun|2] dx
n LEN on Tin

By adding and subtracting - Wh(un) inside the integral we get

1
/ [W (x’ x,un> + 5n|Vun|2] dz
A, LEn On Mn

1
g/ { Wh(un)+sn\vun\2] do + — W(ﬂcxun) — Wh(u,)| dz.  (66)
A, LEn EnJAa, On Tin
First of all, we want to prove that:
1 r x h
nlgrolo 5n/An w <5n777n’un> — WH(uy,)| dz = 0. (67)
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Note that, as we wanted, the sets P,, Q,, and R, are pairwise disjoint and A,, = P, UQ, U R,,.
Thus, we get that

/ w (x,m,un> dx
An on Tin
:/ W(x,x,un> d:v+/ W(x,x,un> dx—l—/ W(x,x,un> dzx.
P, 577/ n n 61’7, Mn n 571 n

We now define
Zn = 5n§1 + &2 — Tint2m,
and also the following sum operator:

D=2t > (68)
£1,82 &1€1, §2€E82  L1€I5 E2€T,(61)

which incorporates the integral over P, and ),,. Therefore, we get

/W i,i,un da:—i—/ w i,i,un dx—i—/ w i,i,un dz
n On In n On, Min n On Tn

xr X
= Z/ X / W(yl,y%u?un)dyadyldw/ W(un> dz
1,60 ) &1 Qs /o~ T2+ Q2 Q2 n On T

By using the definition of the homogenized W (p) given by

Wh(z) 3=/ W (y1,y2, 2) dyz2 dy1,
1JQ2

and the definition of z, given above, we get

[ (5 2 na) ) = ()

Oon n
< Z/ R / / W (Y1, 92, un(2n + 1ny2)) = W (Y1, Y2, un(20))| dya dyr da
1,62 0n€1+0nQ1,5 13 t2,n+1Q2 J Q2

£y / / / W (g1, st (20)) — W (51, g2, ()| dy dyy
0n€1+0n Q1<s E

61752 % Q2 2
—i—/ w ( ) ’ dx

= J g2+ g3 (69)
Before estimating these terms, we need these two further estimates.
Take z € 6,61 + 0,Q1,, 2n defined as above as z, = §,§1 + M2 — Nntay, and yo € Q2. We
need to estimate |up(z) — un(2,)| and |un(zn + Mny2) — un(2n)|. From Lemma 46 we know that
lgn| < %, therefore, by denoting with w-: [0, +00) — [0, 4+00) the modulus of continuity of ~,
we can write

dx

|un(2) = un(zn)| = |y (gn (dist(x, 0A))) — 7 (gn (dist(zn, OA)))|
< wy (gn (dist(z, 0A)) — gn (dist(zn, 0A)))

1
<wy | — |z — 2]
"\ z,

< w, (51 |dist(z,0A) — dist(zy, 8A)|>
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For the other estimate it is analogous, and the only difference is that |z, + n,y2 — 2| < Cny,.
Therefore we get

un(2n + Mny2) — un(zn)| = |7 (gn (dist(zn + Nny2, 0A))) — 7 (gn (dist(zn, 0A)))]
< wy (gn (dist(zn + Nny2, 0A)) — gn (dist(zn, 0A)))

1
< w, <€ |dist(z, + Nny2, 0A) — dist(zy, 8A)|>

Y ’ |
w —
nnn Y2
Tin
Wv( 571)

We are now ready to estimate each term on the right-hand side of (69). For J3 we have the

simple estimate:
3
7=
Ry

S/ W (x,x,un(x)ﬂ dm—i—/ ’Wh (un(:c))‘ dz
n On i Rn
< ¢, (70)

where the last step follows from (65).
For the estimate of J2, we denote by wyy the modulus of continuity of W in Q1 x Q2 x Bas(0).
Let HY be the cardinality of (I, x Z2) U (IS X Jy,). From our costruction it follows that:

Al |7t
limHSV ’J =1

IN

(571, Tin

W (”“’ x,un(x)> —wh (un(x))‘ dz

Therefore we get:

2 <Y / ) / / W (51, 420t (20)) = W (g1, 92, ()] dy dyy da
£1,60 ) In&1 Qs o= Pian+ Q2 J Q2

<>/ [ o (o (2n) = o)) e o
0n&1+6nQ1,5 Y Plo—Tun n+12Q2 J Q2

£1,82 on on 5n
1)
: Z/ 5 / / ww <y1’3/2’wv <C">> dy2 dy; dz
£1,82 on&1+0nQ1,6 :SITT:&_Z*ZL?W“‘Z*ZQQ Q2 En

on
< H?niv/ / ww (yhyz,% <c€)> dy2 dyr
1 2 n
On
< CEn/ / ww <y1,y2,w7 <C€>> dye dy;. (71)
1 2 n

From the definition of wy (y1,y2,-), it follows that for almost every y; € Q1, y2 € Q2 it holds

| 5,
T [V (91, . 0 20)) — (91, 2 ()| < o (yl, yartin (65» |

n
Moreover, by the definition of u, with the boundedness assumption on W, we have that for
every n € N, for almost every y; € Q1, y2 € @2, there exists C' > 0 such that:

(W (y1, Y2, un(2n)) — W(y1, y2, un(x))| < C.
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Using the Dominated Convergence Theorem, this implies that

. On
7}1_)1{.10/ / ww <y1,y2,w7 <c€>> dys dy; = 0. (72)
1 2 n

For J!, we have an analogous estimate:

71 < Z / / / W (51, 92 tn (2 + Ta2)) — W (51, 2, ()| gz dys
n§1+5nQ16 L 7]

2

< / / / ww (Y1, Y2, [un(2n + ny2) — tn(2n)|) dyz dy; da
€162 n§1+5nQ1 5 2

< / / / ww (3/173/2,% <an)> dyz dys dz
£1,6 n§1+5nQ15 g +n Q2 2 n

277n / / ww <y17y27w’y <677 >> ddeyl
1 2 6
< csn/ / ww <y1,yz,wv <an)> dyz dy. (73)
Q1 JQ2 n

Same as before, we also know that

nhﬁnolof / W <yl,yg,w7 (c?)) dys dy; = 0. (74)
1 2 n

Thus, from (69), (74), (72) and (70) we obtain (67).
Then, from (66), the coarea formula and (59), we get:

1
lim sup F\M (uy,) = limsup/ [W (3:’ x7un> +5n|vun|2:| dz
N—00 n—oo JQ LEn on Tin
1
:limsup/ [W (x’xjun> —i—en]Vun]Q} dz
n—oo An En 571 Tin

1
< lim sup/ LWh (un) + En]VunP} dz
An n

n—oo

~ limsup / " [;nwwgnw))) + enw«gn(s))F\g;(s)ﬂ HN ({dist(z, 04) = 5}) ds

n—oo J—r,

< limsup sup HY ™! ({dist(z, 04) —8})/Tn [1 W (g (8)))+€n|7'(gn(8))!2lg;(8)\2] ds

n—o0  |s|<p, —Tn

< limsup sup HY 1 ({dist(x,0A) = s}) [/ 20/ Wh(~y(t)|Y ()| dt + Q\F)\L(y)]

n—oo  |s|<tp,

< (o + 3¢) limsup sup HV ! ({dist(x,DA) = s})

n—oo ‘S‘ST’n
= (o0 + 3c) HY L(0ANQ),
where in the last inequality we used Lemma 46 and (62). We conclude by arbitrariness of ¢. [
8. MASS-CONSTRAINED CASE

The goal of this section is to prove Theorem 13. In the case of a mass constrain, the proof
needs to change slightly. The procedures for the compactness and liminf inequality remain un-
changed, and only the proof for the limsup has to be modified.
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Proof. Step 1: We now have u € BV(£; {a, b}) with
/ udz = ma+ (1 —m)b.
Q

Then, defining as before A := {u = a}, this implies that |A| = m. Since this is a set of finite
perimeter, in Proposition 44 we approximated with a sequence (A,), of appropriate C? sets.
The problem here is that we did not require these sets to satisfy the constraint |A,| = m for
every n € N. Therefore, this is the first change that needs to be addressed: we thus follow an
idea originally due to Ryan Murray.

A, — Al

FIGURE 6. Idea of the construction for the C? approximations.

Since A is a set of finite perimeter, we can take its reduced boundary 0*A. Let’s now take

x1,72 € 0*A, and k € N and define

o= (aun () 1 5(on ).

1p, - 14 in LI(Q;R) as k — oo.
Moreover, we can check that
ID1p,| (Q) =H""1(QNo*Dy)

<HN L QN A) + HV ! <QmB<a:1,]1€>) + HNL (QmB(:@,D)
- HNL(QNo*A)
= |D14[ ().

Therefore we also have

it is possible to see that

klim Per(Dy; Q) = Per(A4; Q).

—00

Since x1, 12 € 0* A, they are points of density %, that is

|AN B(zy,7)| . AN B(z2,7)|

li =0 1 = 0.
0 |B(x1,7)]| ’ ro0 |B(xa,7)]|

Therefore, this implies that there exists k large enough such that
1 1 1 1 3 1
ANB - - |B - ANB - - |B — 1.

b
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Let now (D}), be the sequence of sets obtained by applying Proposition 44 to the set Dj,. Since
we have convergence in perimeter and L', this implies that for a fixed k, there exists 71 (k) € N
such that for every n > (k) we have

1 1
|Per (Dy; Q) — Per (D}; )| < o /Q |1p, () — ]ng(x){ dz < T

Since these sets D} are obtained by using a standard mollifying procedure and taking a super-
level set, we know that there exists ma2(k) € N such that for every n > max{ni(k),n2(k)} we
have both the previous inequalities and also

1 1
4\~ 1 4\~ 1

This holds because
1
A\ ¥
(1) <1 e

We have now three cases to distinguish between. If |[D}}| = m then we do not have to do
anything for now. Assume now that |D}}| > m. Define 7} > 0 to be the radius such that

|B (z1,7)| = |[Dg| =m >0,

and define
p=Dp\ B(z1,rp).

4
n < _
< (3)
Since we know that |A| = m and

1 1 1

We now want to prove that

z|-

1
-

we have
1 1
< |Al+ |B 1 —|B lmA—B —INA
= x1, L x1, 2 x2, k
1 1 1
< — N —
< |Al + B(azl,k>‘ 4‘3 (m,k)‘

3 1
-1+ e ()

3\ V1
Therefore, for n large enough we also get

1 1

3\ V1 A\~ 1

B - - B - -
(“’ (4> k:) (5”1’ <5> k:)

therefore we got the estimate on r}}. This in particular implies that the set A} is also C?, and
it follows that

B (x1,75)| = [Dy| —m < <

)

| ARl = [D| = B (z1,7%)| = [Dg| = | D[ +m = m.
Assume now that |D}!| < m. Define r} > 0 to be the radius such that
|B (z1,7)| = m — [Dg| >0,
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and define
b =D UB (z2,7}).

We now want to prove that

Since we know that |A| = m and

1 3 1
A - 2 -
m3<x2,k)‘<4‘3 (22:7)

we have

1V
=
|
=] w
/—\
S
»
—
N———— /

Therefore, for n large enough we also get

(s (1) <[ (= (5)73)

therefore we got the estimate on r}'. This in particular implies that the set A} is also C?, and
it follows that

| B (z2,7%)| = m — [Dy| < <

Y

| AL = |DE| + |B (z2,71)| = [D| +m — |Dy| =
Therefore we just proved that we can always for every k we can modify the sequence of sets
obtained from Proposition 44 applied to Dy such that every element of the sequence satisfies
the mass constraint. Using a diagonal argument, we can therefore obtain the desired conclusion.
Step 2: Let u, be defined as in (63). In general it is not true that this function satisfies the
mass constraint, therefore we need to modify it accordingly.

Let N > 2 and define
My = / up(x) de.
Q

If, for a given n € N, we have m,, = m, then we are done. Let’s suppose that m,, # m. Let us
recall the definition of A,,:

Ay = {z € Q:|dist(z,04)] < ,},
which is the set where u,(z) ¢ {a,b}.
Let z9 € Q\ A, such that u,(z9) = u(zg) = a. Let now (r,)nen be an infinitesimal sequence
and define B,, := B(x¢,r,). We can now modify w,, as follows:
un () x € Q\ By,
un(x) = lz—0l
a+cp(my, —m) (1 - = T € By,

Tn

where ¢, € R is to be determined by enforcing the mass constraint.
Therefore we must have

m:/ﬂvn(x)da:
:/Q\Bn un(m)dx—i—/n I:G—FCn(mn_m) <1—|$;f0|ﬂ dz
:/Qun(x)d:c—/nun(x>dx+/nadm+cn(mn_m)/Bn [“yxr_nm} d
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1
= my + cp(my, — m)Nri,]IV/ (1—s)sV1ds
0

WN
N+1’

= - ey — )l

which implies
_ N+1 1
Cp = — oy @
Therefore with this choice of ¢,, the function v,, satisfies the mass constraint. We need to check
that it still converges in L', and that is does not change the energy in the limit. Checking the

L' convergence is easy, since the way we chose the constant ¢, implies

/ncn(mn—m) (1 - ’”“”T_nm) dz

For the energy convergence, we need to check that

lim F"(v,, By) = 0.

n—o0

= |m —my,| — 0.

Let us check first the potential energy term:

/B Ly <a+cn(mn —m) (1 - '”””‘“')) do = 7"5/15N—1W<a+cn<mn “m)(1 - 8)) ds.

L En Tn En Jo
Since W(z) < C'if |z| < M for (H4), we get that this term behaves like

1 N
/ —W(vy)dz < cm.
Bn En En

For the gradient energy term, we get

2

2 2
Co |y, — TN My — M|°E
/6n|an|2d:B:/ gnrﬂniﬁdng%,
n n T"’b Tn

We have
|my, —m| < / |up, — u|da = / [up, — u|dz < |b—a|LN(A,) < Cey,
Q An

therefore we obtain

3
€n

,r.%JrN

/ 5n|an|2d:U <C

FIGURE 7. Idea of the construction for the recovery sequence.
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Summing up we get

(1) N o
n n
E\ (v, By) < C€n + CT%JFN.
Since HLN > % for N > 2, it is enough to take r, = ¢, with
! <a<
— <«
N 2+ N

to prove that FT(LI)(Un, B,) — 0, and we conclude.
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